ECU Libraries Catalog

Basic one- and two-dimensional NMR spectroscopy / Horst Friebolin.

Author/creator Friebolin, Horst
Format Book and Print
Edition5th completely rev. and enlarged ed.
Publication InfoWeinheim : WILEY-VCH, ©2011.
Descriptionxxiv, 418 pages : illustrations ; 24 cm
Subject(s)
Uniform titleEin- und Zweidimensionale NMR-Spektroskopie. English
Contents Machine generated contents note: 1. The Physical Basis of NMR Spectroscopy -- 1.1. Introduction -- 1.2. Nuclear Angular Momentum and Magnetic Moment -- 1.3. Nuclei in a Static Magnetic Field -- 1.3.1. Directional Quantization -- 1.3.2. Energy of the Nuclei in the Magnetic Field -- 1.3.3. Populations of the Energy Levels -- 1.3.4. Macroscopic Magnetization -- 1.4. Basic Principles of the NMR Experiment -- 1.4.1. The Resonance Condition -- 1.4.2. Basic Principle of the NMR Measurement -- 1.5. The Pulsed NMR Method -- 1.5.1. The Pulse -- 1.5.2. The Pulse Angle -- 1.5.3. Relaxation -- 1.5.4. The Time and Frequency Domains; the Fourier Transformation -- 1.5.5. Spectrum Accumulation -- 1.5.6. The Pulsed NMR Spectrometer -- 1.6. Spectral Parameters: a Brief Survey -- 1.6.1. The Chemical Shift -- 1.6.1.1. Nuclear Shielding -- 1.6.1.2. Reference Compounds and the & delta;-Scale -- 1.6.2. Spin-Spin Coupling -- 1.6.2.1. The Indirect Spin-Spin Coupling -- 1.6.2.2. Coupling to One Neighboring Nucleus (AX Spin System).
Contents 1.6.2.3. Coupling to Two Equivalent Neighboring Nuclei (AX2 Spin System) -- 1.6.2.4. Coupling to Three or More Equivalent Neighboring Nuclei (AXn Spin System) -- 1.6.2.5. Multiplicity Rules -- 1.6.2.6. Couplings between Three Non-equivalent Nuclei (AMX Spin System) -- 1.6.2.7. Couplings between Equivalent Nuclei (An Spin Systems) -- 1.6.2.8. The Order of a Spectrum -- 1.6.2.9. Couplings between Protons and other Nuclei; 13C Satellite Spectra -- 1.6.3. The Intensities of the Resonance Signals -- 1.6.3.1. 1H Signal Intensities -- 1.6.3.2. 13C Signal Intensities -- 1.6.4. Summary -- 1.7. "Other" Nuclides -- 1.7.1. Nuclides with Spin I = 1/2 -- 1.7.2. Nuclides with Spin> 1/2 -- Exercises -- 1.8. Bibliography for Chapter 1 -- 2. The Chemical Shift -- 2.1. Introduction -- 2.1.1. Influence of the Charge Density on the Shielding -- 2.1.2. Effects of Neighboring Groups -- 2.1.2.1. Magnetic Anisotropy of Neighboring Groups -- 2.1.2.2. Ring Current Effects -- 2.1.2.3. Electric Field Effects -- 2.1.2.4. Intermolecular Interactions-Hydrogen Bonding and Solvent Effects.
Contents 2.1.2.5. Isotope Effects -- 2.1.3. Summary -- 2.2. 1H Chemical Shifts of Organic Compounds -- 2.2.1. Alkanes and Cycloalkanes -- 2.2.2. Alkenes -- 2.2.3. Arenes -- 2.2.4. Alkynes -- 2.2.5. Aldehydes -- 2.2.6. Oh, Sh, NH -- 2.3. 13C Chemical Shifts of Organic Compounds -- 2.3.1. Alkanes and Cycloalkanes -- 2.3.2. Alkenes -- 2.3.3. Arenes -- 2.3.4. Alkynes -- 2.3.5. Allenes -- 2.3.6. Carbonyl and Carboxy Compounds -- 2.3.6.1. Aldehydes and Ketones -- 2.3.6.2. Carboxylic Acids and Derivatives -- 2.4. Relationships between the Spectrum and the Molecular Structure -- 2.4.1. Equivalence, Symmetry and Chirality -- 2.4.2. Homotopic, Enantiotopic and Diastereotopic Groups -- 2.4.3. Summary -- 2.5. Chemical Shifts of "Other" Nuclides -- Exercises -- 2.6. Bibliography for Chapter 2 -- 3. Indirect Spin-Spin Coupling -- 3.1. Introduction -- 3.2. H, H Coupling Constants and Chemical Structure -- 3.2.1. Geminal Couplings 2J(H, H) -- 3.2.1.1. Dependence on Bond Angle -- 3.2.1.2. Substituent Effects -- 3.2.1.3. Effects of Neighboring & pi;-Electrons.
Contents 3.2.2. Vicinal Couplings 3J(H, H) -- 3.2.2.1. Dependence on the Dihedral Angle -- 3.2.2.2. Substituent Effects -- 3.2.3. H, H Couplings in Aromatic Compounds -- 3.2.4. Long-range Couplings -- 3.3. C, H Coupling Constants and Chemical Structure -- 3.3.1. C, H Couplings through One Bond 1J(C, H) -- 3.3.1.1. Dependence on the s-Fraction -- 3.3.1.2. Substituent Effects -- 3.3.2. C, H Couplings through Two or More Bonds -- 3.3.2.1. Geminal Couplings (i. e. 2J(C, H) in H-C-13C) -- 3.3.2.2. Vicinal Couplings (i. e. 3J(C, H) in H-C-C-13C) -- 3.3.2.3. Long-range Couplings 3+nJ(C, H) -- 3.3.3. C, H Couplings in Benzene Derivatives -- 3.4. C, C Coupling Constants and Chemical Structure -- 3.5. Correlations between C, H and H, H Coupling Constants -- 3.6. Coupling Mechanisms -- 3.6.1. The Electron-Nuclear Interaction -- 3.6.2. H, D Couplings -- 3.6.3. Relationship between the Coupling and the Lifetime of a Spin State -- 3.6.4. Couplings through Space -- 3.7. Couplings of "Other" Nuclides (Heteronuclear Couplings) -- Exercises -- 3.8. Bibliography for Chapter 3 -- 4. Spectrum Analysis and Calculations.
Contents 4.1. Introduction -- 4.2. Nomenclature -- 4.2.1. Systematic Notation for Spin Systems -- 4.2.2. Chemical and Magnetic Equivalence -- 4.3. Two-Spin Systems -- 4.3.1. The AX Spin System -- 4.3.2. The AB Spin System -- 4.4. Three-Spin Systems -- 4.4.1. The AX2, AK2, AB2 and A3 Spin Systems -- 4.4.2. The AMX and ABX Spin Systems -- 4.5. Four-Spin Systems -- 4.5.1. A2X2 and A2B2 Spin Systems -- 4.5.2. The AA'XX' and AA'BB' Spin Systems -- 4.6. Spectrum Simulation and Iteration -- 4.7. Analysis of 13C NMR Spectra -- Exercises -- 4.8. Bibliography for Chapter 4 -- 5. Double Resonance Experiments -- 5.1. Introduction -- 5.2. Spin Decoupling in 1H NMR Spectroscopy -- 5.2.1. Simplification of Spectra by Selective Spin Decoupling -- 5.2.2. Suppression of a Solvent Signal -- 5.3. Spin Decoupling in 13C NMR Spectroscopy -- 5.3.1. 1H Broad-band Decoupling -- 5.3.2. The Gated Decoupling Experiment -- 5.3.3. 1H Off-Resonance Decoupling -- 5.3.4. Selective Decoupling in 13C NMR Spectroscopy -- Exercises -- 5.4. Bibliography for Chapter 5 -- 6. Assignment of 1H and 13C Signals.
Contents 6.1. Introduction -- 6.2. 1H NMR Spectroscopy -- 6.2.1. Defining the Problem -- 6.2.2. Empirical Correlations for Predicting Chemical Shifts -- 6.2.2.1. Alkanes (Shoolery's Rule) -- 6.2.2.2. Alkenes -- 6.2.2.3. Benzene Derivatives -- 6.2.3. Decoupling Experiments -- 6.2.4. Altering the Chemical Structure of the Sample -- 6.2.5. Effects of Solvent and Temperature -- 6.2.6. Shift Reagents -- 6.2.6.1. Lanthanide Shift Reagents (LSRs) -- 6.2.6.2. Chiral Lanthanide Shift Reagents -- 6.3. 13C NMR Spectroscopy -- 6.3.1. Defining the Problem -- 6.3.2. Empirical Correlations for Predicting Approximate Chemical Shifts -- 6.3.2.1. Alkanes -- 6.3.2.2. Alkenes -- 6.3.2.3. Benzene Derivatives -- 6.3.3. Decoupling Experiments -- 6.3.4. T1 Measurements -- 6.3.5. Chemical Changes to the Sample -- 6.3.6. Solvent and Temperature Effects and Shift Reagents -- 6.4. Computer-aided Assignment of 13C NMR Spectra -- 6.4.1. Searching for Identical or Related Compounds -- 6.4.2. Spectrum Prediction -- Exercises -- 6.5. Bibliography for Chapter 6 -- 7. Relaxation.
Contents 7.1. Introduction -- 7.2. Spin-Lattice Relaxation of 13C Nuclei (Ti) -- 7.2.1. Relaxation Mechanisms -- 7.2.2. Experimental Determination of T1; the Inversion Recovery Experiment -- 7.2.3. Relationships between T1 and Chemical Structure -- 7.2.3.1. Influence of Protons in CH, CH2 and CH3 Groups -- 7.2.3.2. Influence of Molecular Size -- 7.2.3.3. Segmental Mobilities -- 7.2.3.4. Anisotropy of the Molecular Mobility -- 7.2.4. Suppression of the Water Signal -- 7.3. Spin-Spin Relaxation (T2) -- 7.3.1. Relaxation Mechanisms -- 7.3.2. Experimental Determination of T2; the Spin-Echo Experiment -- 7.3.3. Line-widths of NMR Signals -- Exercises -- 7.4. Bibliography for Chapter 7 -- 8. One-Dimensional NMR Experiments using Complex Pulse Sequences -- 8.1. Introduction -- 8.2. Basic Techniques Using Pulse Sequences and Pulsed Field Gradients -- 8.2.1. The Effect of the Pulse on the Longitudinal Magnetization (Mz) -- 8.2.2. The Effect of the Pulse on the Transverse Magnetization Components (Mx, My) -- 8.2.3. Spin-Locking -- 8.2.4. The Effect of Pulsed Field Gradients on the Transverse Magnetization.
Contents 8.3. The J-Modulated Spin-Echo Experiment -- 8.4. The Pulsed Gradient Spin-Echo Experiment -- 8.5. Signal Enhancement by Polarization Transfer -- 8.5.1. The SPI Experiment -- 8.5.2. The INEPT Experiment -- 8.5.3. The Reverse INEPT Experiment with Proton Detection -- 8.6. The DEPT Experiment -- 8.7. The Selective TOCSY Experiment -- 8.8. The One-Dimensional INADEQUATE Experiment -- Exercises -- 8.9. Bibliography for Chapter 8 -- 9. Two-DimensionalNMR Spectroscopy -- 9.1. Introduction -- 9.2. The Two-Dimensional NMR Experiment -- 9.2.1. Preparation, Evolution and Mixing, Data Acquisition -- 9.2.2. Graphical Representation -- 9.3. Two-Dimensional J-Resolved NMR Spectroscopy -- 9.3.1. Heteronuclear Two-Dimensional J-Resolved NMR Spectroscopy -- 9.3.2. Homonuclear Two-Dimensional J-Resolved NMR Spectroscopy -- 9.4. Two-Dimensional Correlated NMR Spectroscopy -- 9.4.1. Two-Dimensional Heteronuclear (C, H)-Correlated NMR Spectroscopy (HETCOR or C, H-COSY) -- 9.4.2. Two-Dimensional Homonuclear (H, H)-Correlated NMR Spectroscopy (H, H-COSY; Long-Range COSY) -- 9.4.3. Reverse Two-Dimensional Heteronuclear (H, C)-Correlated NMR Spectroscopy (HSQC; HMQC).
Contents 9.4.4. The Gradient-Selected (gs- )HMBC Experiment -- 9.4.5. The TOCSY Experiment -- 9.4.6. Two-Dimensional Exchange NMR Spectroscopy: The Experiments NOESY ROESY and EXSY -- 9.5. The Two-Dimensional INADEQUATE Experiment -- 9.6. Summary of Chapters 8 and 9 -- Exercises -- 9.7. Bibliography for Chapter 9 -- 10. The Nuclear Overhauser Effect -- 10.1. Introduction -- 10.2. Theoretical Background -- 10.2.1. The Two-Spin System -- 10.2.2. Enhancement Factors -- 10.2.3. Multi-Spin Systems -- 10.2.4. From the One-Dimensional to the Two-Dimensional Experiments, NOESY and ROESY -- 10.3. Experimental Aspects -- 10.4. Applications -- Exercises.
Contents Note continued: 10.5. Bibliography for Chapter 10 -- 11. Dynamic NMR Spectroscopy (DNMR) -- 11.1. Introduction -- 11.2. Quantitative Calculations -- 11.2.1. Complete Line-shape Analysis -- 11.2.2. The Coalescence Temperature Tc and the Corresponding Rate Constant & kappa;c -- 11.2.3. Activation Parameters -- 11.2.3.1. The Arrhenius Activation Energy EA -- 11.2.3.2. The Free Enthalpy of Activation & Delta;G -- 11.2.3.3. Estimating the Limits of Error -- 11.2.4. Rate Constants in Reactions with Intermediate Stages -- 11.2.5. Intermolecular Exchange Processes -- 11.3. Applications -- 11.3.1. Rotation about CC Single Bonds -- 11.3.1.1. C(sp3)-C(sp3) Bonds -- 11.3.1.2. C(sp2)-C(sp3) Bonds -- 11.3.1.3. C(sp2)-C(sp2) Bonds -- 11.3.2. Rotation about a Partial Double Bond.
Contents 11.3.3. Inversion at Nitrogen and Phosphorus Atoms -- 11.3.4. Ring Inversion -- 11.3.5. Valence Tautomerism -- 11.3.6. Keto-Enol Tautomerism -- 11.3.7. Intermolecular Proton Exchange -- 11.3.8. Reactions and Equilibration Processes -- Exercises -- 11.4. Bibliography for Chapter 11 -- 12. Synthetic Polymers -- 12.1. Introduction -- 12.2. The Tacticity of Polymers -- 12.3. Polymerization of Dienes -- 12.4. Copolymers -- 12.5. Solid-State NMR Spectroscopy of Polymers -- Exercises -- 12.6. Bibliography for Chapter 12 -- 13. NMR Spectroscopy in Biochemistry and Medicine -- 13.1. Introduction -- 13.2. Elucidating Reaction Pathways in Biochemistry -- 13.2.1. Syntheses using Singly 13C-Labeled Precursors -- 13.2.1.1. Low Levels of 13C Enrichment -- 13.2.1.2. High Levels of 13C Enrichment -- 13.2.2. Syntheses using Doubly 13C-Labeled Precursors.
Contents 13.3. Biopolymers -- 13.3.1. Peptides and Proteins -- 13.3.1.1. Sequence Analysis -- 13.3.1.2. The Three-Dimensional Structure of Proteins -- 13.3.2. Polynucleotides -- 13.3.3. Oligosaccharides and Polysaccharides -- 13.4. Saturation Transfer Difference NMR Spectroscopy (STD) -- Exercises -- 13.5. Bibliography for Chapter 13 -- 14. In vivo NMR Spectroscopy in Biochemistry and Medicine -- 14.1. Introduction -- 14.2. High-Resolution in vivo NMR Spectroscopy -- 14.2.1. The Problem and its Solution -- 14.2.2. 31P NMR Experiments -- 14.2.3. 1H and 13C NMR Experiments -- 14.3. Magnetic Resonance Tomography -- 14.3.1. Basic Principles and Experimental Considerations -- 14.3.2. Applications -- 14.4. Magnetic Resonance Spectroscopy, 1H MRS -- Exercises -- 14.5. Bibliography for Chapter 14.
Abstract "Another paperback that I would advise students to buy ... [it] can be recommended for general purchase by all chemists." New Scientist.
Abstract "This book deserves much praise. If only all authors took as much trouble to produce a work of such clarity and relevance. The book forms an excellent bridge between the very simple texts on spectral interpretation and more specialist works with an emphasis on mathematical theory. This book is highly educational and will be of benefit to those who have to teach NMR and to students and scientists in academic and industrial laboratories. this work is right up to date with an inclusion of most widely used modern NMR methods with a style and content that is superb." NMR in Biomedicine.
Abstract " ... With it's fourth edition, Friebolin's NMR textbook remains the valuable companion and helpful guide as which it is well-known and appreciated among chemists and other scientists who seek a practical, comprehensive, but easy-to-read introduction into high-resolution NMR spectroscopy on organic molecules." Dr. Ingo Schnell, Max-Planck-Institutefor Polymer Research, Mainz, ChemPhysChem --Book Jacket.
Bibliography noteIncludes bibliographical references and index.
LanguageTranslated from the German.
Genre/formLehrbuch.
LCCN 2011414415
ISBN9783527327829
ISBN3527327827
Standard identifier# 99942736995

Available Items

Library Location Call Number Status Item Actions
Joyner General Stacks QP519.9 .N83 F7513 2011 ✔ Available Place Hold