ECU Libraries Catalog

The light fantastic : a modern introduction to classical and quantum optics / I.R. Kenyon.

Author/creator Kenyon, I. R.
Format Book and Print
Edition2nd ed.
Publication InfoOxford ; New York : Oxford University Press, 2011.
Descriptionxxi, 710 pages : illustrations ; 26 cm
Subject(s)
Contents Machine generated contents note: 1. Introduction -- 1.1. Aims and overview -- 1.2. Electromagnetic waves -- 1.3. The velocity of light -- 1.4. A brief outline of electromagnetic wave theory -- 1.4.1. More general waveforms -- 1.5. The electromagnetic spectrum -- 1.5.1. Visible spectra -- 1.6. Absorption and dispersion -- 1.7. Radiation terminology -- 1.8. Black body radiation -- 1.9. Doppler shift -- 1.10. Waveform conventions -- 2. Reflection and refraction at plane surfaces -- 2.1. Light rays and Huygens' principle -- 2.1.1. The laws of reflection -- 2.1.2. Snell's law of refraction -- 2.1.3. Fermat's principle -- 2.1.4. Simple imaging -- 2.1.5. Deviation of light by a triangular prism -- 2.2. Total internal reflection -- 2.2.1. Constant deviation prism -- 2.2.2. Porro prisms -- 2.2.3. Corner cube reflector -- 2.2.4. Pulfrich refractometer -- 2.3. Optical fibre -- 2.4. Micromirror projector -- 3. Spherical mirrors and lenses -- 3.1. Introduction -- 3.1.1. Cartesian sign convention
Contents 3.2. Spherical mirrors -- 3.2.1. Ray tracing for mirrors -- 3.3. Refraction at a spherical interface -- 3.4. Thin lens equation -- 3.4.1. Ray tracing for lenses -- 3.4.2. Magnifiers -- 3.5. Matrix methods for paraxial optics -- 3.5.1. The equivalent thin lens -- 3.6. Aberrations -- 3.6.1. Monochromatic aberrations -- 3.6.2. Spherical aberration -- 3.6.3. Coma -- 3.6.4. Astigmatism -- 3.6.5. Field curvature -- 3.6.6. Distortion -- 3.6.7. Chromatic aberration -- 3.7. Further reading -- 4. Optical instruments -- 4.1. Introduction -- 4.2. The refracting telescope -- 4.2.1. Field of view -- 4.2.2. Etendue -- 4.3. Telescope objectives and eyepieces -- 4.4. The microscope -- 4.5. Cameras -- 4.5.1. Camera lens design -- 4.5.2. SLR camera features -- 4.5.3. Telecentric lenses -- 4.5.4. Telephoto lenses -- 4.5.5. Zoom lenses -- 4.6. Graded index lenses -- 4.7. Aspheric lenses -- 4.8. Fresnel lenses -- 5. Interference effects and interferometers -- 5.1. Introduction -- 5.2. The superposition principle -- 5.3. Young's two slit experiment
Contents 5.3.1. Fresnel's analysis -- 5.3.2. Interference by amplitude division -- 5.4. Michelson's interferometer -- 5.4.1. The constancy of c -- 5.5. Coherence and wavepackets -- 5.5.1. The frequency content of wavepackets -- 5.5.2. Optical beats -- 5.5.3. Coherence area -- 5.6. Stokes' relations -- 5.7. Interferometry -- 5.7.1. The Twyman-Green interferometer -- 5.7.2. The Fizeau interferometer -- 5.7.3. The Mach-Zehnder interferometer -- 5.7.4. The Sagnac interferometer -- 5.8. Standing waves -- 5.9. The Fabry-Perot interferometer -- 6. Diffraction -- 6.1. Introduction -- 6.2. Huygens-Fresnel analysis -- 6.3. Single slit Fraunhofer diffraction -- 6.4. Diffraction at a rectangular aperture -- 6.5. Diffraction from multiple identical slits -- 6.6. Babinet's principle -- 6.7. Fraunhofer diffraction at a circular hole -- 6.8. Diffraction gratings -- 6.9. Spectrometers and spectroscopes -- 6.9.1. Grating structure -- 6.9.2. Etendue -- 6.9.3. Czerny-Turner spectrometer -- 6.9.4. Littrow mounting -- 6.9.5. Echelle grating
Contents 6.9.6. Automated spectrometers -- 6.10. Fresnel and Fraunhofer diffraction -- 6.11. Single slit Fresnel diffraction -- 6.11.1. Lunar occupation -- 6.12. Fresnel diffraction at screens with circular symmetry -- 6.12.1. Zone plates -- 6.13. Microprocessor lithography -- 6.14. Near field diffiraction -- 6.15. Gaussian beams -- 6.15.1. Matrix methods -- 7. Fourier optics -- 7.1. Introduction -- 7.2. Fourier analysis -- 7.2.1. Complex field usage -- 7.2.2. Diffraction and convolution -- 7.3. Coherence and correlations -- 7.3.1. Power spectra -- 7.3.2. Fourier transform spectrometry -- 7.3.3. Line width and bandwidth -- 7.4. Image formation and spatial transforms -- 7.5. Spatial filtering -- 7.5.1. Schlieren photography -- 7.5.2. Apodization -- 7.6. Acousto-optic Bragg gratings -- 7.6.1. Microwave spectrum analysis -- 7.7. Holography -- 7.7.1. Principles of holography -- 7.7.2. Hologram preparation -- 7.7.3. Motion and vibration analysis -- 7.7.4. Thick holograms -- 7.8. Optical information processing -- 7.8.1. The 4f architecture
Contents 7.8.2. Data storage and retrieval -- 8. Astronomical telescopes -- 8.1. Introduction -- 8.2. Telescope design -- 8.2.1. Auxiliary equipment -- 8.3. Schmidt camera -- 8.4. Atmospheric turbulence -- 8.5. Adaptive optics -- 8.5.1. Lucky imaging -- 8.6. Michelson's stellar interferometer -- 8.7. Modern interferometers -- 8.8. Aperture synthesis -- 8.9. Aperture arrays -- 8.10. Image recovery -- 8.11. Comparisons with radioastronomy -- 8.12. Gravitational wave detectors -- 8.12.1. Laser-cavity locking -- 8.12.2. Noise sources -- 8.13. Gravitational imaging -- 9. Classical electromagnetic theory -- 9.1. Introduction -- 9.2. Maxwell's equations -- 9.3. The wave equation -- 9.3.1. Energy storage and energy flow -- 9.4. Electromagnetic radiation -- 9.5. Reflection and refraction -- 9.6. Fresnel's equations -- 9.7. Interference filters -- 9.7.1. Analysis of multiple parallel plane layers -- 9.7.2. Beam splitters -- 9.8. Modes of the electromagnetic field -- 9.8.1. Mode counting -- 9.9. Planar waveguides -- 9.9.1. The prism coupler
Contents 10. Polarization -- 10.1. Introduction -- 10.2. States of polarization -- 10.3. Dichroism and Malus' law -- 10.4. Birefringence -- 10.4.1. Analysis of birefringence -- 10.4.2. The index ellipsoid -- 10.4.3. Energy flow and rays -- 10.4.4. Huygens' construction -- 10.5. Wave plates -- 10.5.1. Jones vectors and matrices -- 10.5.2. Prism separators -- 10.5.3. Polarizing beam splitters and DVD readers -- 10.6. Optical activity -- 10.7. Effects of applied electromagnetic fields -- 10.7.1. Pockels effect and modulators -- 10.7.2. Kerr effect -- 10.7.3. Faraday effect -- 10.8. Liquid crystals -- 10.8.1. The twisted nematic LCD -- 10.8.2. In-plane switching -- 10.8.3. Polymer dispersed liquid crystals (PDLC) -- 10.8.4. Ferroelectric liquid crystals (FELC) -- 10.9. Further reading -- 11. Scattering, absorption and dispersion -- 11.1. Introduction -- 11.2. Rayleigh scattering -- 11.2.1. Coherent scattering -- 11.3. Mie scattering -- 11.4. Absorption -- 11.5. Dispersion and absorption -- 11.5.1. The atomic oscillator model
Contents 11.6. Metallic absorption and reflection -- 11.6.1. Plasmas in metals -- 11.6.2. Group and signal velocity -- 11.6.3. Surface plasma waves -- 11.7. Further reading -- 12. The quantum nature of light and matter -- 12.1. Introduction -- 12.2. The black body spectrum -- 12.3. The photoelectric effect -- 12.4. The Compton effect -- 12.5. de Broglie's hypothesis -- 12.6. The Bohr model of the atom -- 12.6.1. Beyond hydrogen -- 12.6.2. Weaknesses of the Bohr model -- 12.7. Wave-particle duality -- 12.8. The uncertainty principle -- 12.9. Which path information -- 12.10. Wavepackets and modes -- 12.10.1. Etendue -- 12.11. Afterword -- 12.12. Further reading -- 13. Quantum mechanics and the atom -- 13.1. Introduction -- 13.2. An outline of quantum mechanics -- 13.3. Schroedinger's equation -- 13.3.1. The square potential well -- 13.4. Eigenstates -- 13.4.1. Orthogonality of eigenstates -- 13.5. Expectation values -- 13.5.1. Collapse of the wavefunction -- 13.5.2. Compatible or simultaneous observables -- 13.6. The harmonic oscillator potential
Contents 13.7. The hydrogen atom -- 13.8. The Stern-Gerlach experiment -- 13.9. Electron spin -- 13.10. Multi-electron atoms -- 13.10.1. Resonance fluorescence -- 13.10.2. Atoms in constant fields -- 13.11. Photon momentum and spin -- 13.12. Quantum statistics -- 13.13. Line widths and decay rates -- 13.14. Further reading -- 14. Lasers -- 14.1. Introduction -- 14.2. The Einstein coefficients -- 14.3. Prerequisites for lasing -- 14.4. The He:Ne laser -- 14.4.1. Three and four level lasers -- 14.4.2. Gain -- 14.4.3. Cavity modes -- 14.4.4. Hole burning -- 14.4.5. Laser speckles -- 14.4.6. Optical beats -- 14.5. The CO2 gas laser -- 14.6. Organic dye lasers -- 14.6.1. Saturation spectroscopy -- 14.6.2. Cavity ring-down spectroscopy -- 14.6.3. A heterodyne laser interferometer -- 14.7. Introducing semiconductors -- 14.7.1. Double heterostructure lasers -- 14.7.2. DFB lasers -- 14.7.3. Limiting line widths -- 14.8. Quantum well lasers -- 14.8.1. Vertical cavity lasers -- 14.9. Nd:YAG and Nd:glass lasers -- 14.9.1. Q switching -- 14.10. Ti:sapphire lasers
Contents 14.11. Optical Kerr effect and mode locking -- 14.11.1. Mode locking -- 14.12. Frequency combs -- 14.12.1. Optical frequency measurement -- 14.13. Extreme energies -- 14.14. Second order non-linear effects -- 14.14.1. Raman scattering -- 14.14.2. Brillouin scattering -- 14.14.3. Stimulated Raman and Brillouin scattering -- 14.15. Further reading -- 15. Detectors -- 15.1. Introduction -- 15.2. Photoconductors -- 15.3. Photodiodes -- 15.3.1. Dark current -- 15.4. Photodiode response -- 15.4.1. Speed of response -- 15.4.2. Noise -- 15.4.3. Amplifiers -- 15.4.4. Solar cells -- 15.5. Avalanche photodiodes -- 15.6. Schottky photodiodes -- 15.7. Imaging arrays -- 15.7.1. Quantum efficiency and colour -- 15.7.2. CCD readout -- 15.7.3. Noise and dynamic range -- 15.7.4. EM-CCDs -- 15.7.5. CMOS arrays
Contents Note continued: 15.8. Photomultipliers -- 15.8.1. Counting and timing -- 15.9. Microchannel plates and image intensifiers -- 15.10. Further reading -- 16. Optical fibres -- 16.1. Introduction -- 16.2. Attenuation in optical fibre -- 16.3. Guided waves -- 16.4. Fibre types and dispersion properties -- 16.5. Signalling -- 16.6. Sources and detectors -- 16.7. Connectors and routing devices -- 16.7.1. Directional couplers -- 16.7.2. Circulators -- 16.7.3. MMI devices -- 16.8. Link noise and power budget -- 16.9. Long haul links -- 16.9.1. Fibre amplifiers -- 16.9.2. Dispersion compensation -- 16.10. Multiplexing -- 16.10.1. Thin film filters and Bragg gratings -- 16.10.2. Array waveguide gratings -- 16.10.3. MEMS -- 16.11. Solitons -- 16.11.1. Communication using solitons -- 16.12. Fibre optic sensors -- 16.12.1. Fibre Bragg sensors -- 16.12.2. The fibre optic gyroscope -- 16.13. Optical current transformer
Contents 16.14. Further reading -- 17. Photonic crystals -- 17.1. Introduction -- 17.2. Bloch waves -- 17.3. Dispersion relations -- 17.3.1. Off-axis beams -- 17.4. Two-dimensional photonic crystals -- 17.4.1. Two-dimensional band-gaps -- 17.5. Photonic crystal slabs -- 17.5.1. Slow light -- 17.5.2. Anomalous refraction effects -- 17.5.3. LED emission -- 17.6. Photonic crystal fibres -- 17.7. Three-dimensional photonic crystals -- 17.8. Further reading -- 18. Quantum interactions -- 18.1. Introduction -- 18.2. Transition rates -- 18.2.1. Selection rules -- 18.2.2. Electric susceptibility -- 18.3. Rabi oscillations -- 18.4. Dressed states -- 18.4.1. Mollow fluorescence -- 18.4.2. The Autler-Townes effect -- 18.5. Electromagnetically induced transparency -- 18.5.1. Slow light -- 18.6. Trapping and cooling ions -- 18.7. Shelving -- 18.8. Optical clocks -- 18.9. Further reading -- 19. The quantized electromagnetic field -- 19.1. Introduction -- 19.2. Second quantization
Contents 19.2.1. Continuous variables -- 19.3. First order coherence -- 19.4. Second order coherence -- 19.5. Laser light and thermal light -- 19.5.1. Coherent (laser-like) states -- 19.5.2. Thermal light -- 19.6. Observations of photon correlations -- 19.6.1. Stellar correlation interferometer -- 19.7. Entangled states -- 19.7.1. Beam splitters -- 19.7.2. Spontaneous parametric down conversion -- 19.8. The HOM interferometer -- 19.9. Franson-Chiao interferometry -- 19.10. Complementarity -- 19.10.1. Delayed choice and quantum erasure -- 19.11. Transition rates -- 19.12. Further reading -- 20. Quantum dots, optical cavities and cryptography -- 20.1. Introduction -- 20.2. Quantum dots -- 20.2.1. Rabi oscillations involving quantum dots -- 20.3. Optical microcavities -- 20.4. Strong and weak coupling -- 20.5. Rabi oscillations in cavities -- 20.6. Weak coupling -- 20.6.1. Cavity Purcell factors -- 20.7. Quantum cryptography -- 20.7.1. Microcavity diode -- 20.8. Further reading.
Bibliography noteIncludes bibliographical references and index.
LCCN 2011288682 2010931622
ISBN9780199584611 (hbk.)
ISBN0199584613 (hbk.)
ISBN9780199584604 (pbk.)
ISBN0199584605 (pbk.)

Available Items

Library Location Call Number Status Item Actions
Joyner General Stacks QC355.3 .K46 2011 ✔ Available Place Hold