ECU Libraries Catalog

Modeling atmospheric and oceanic flows : insights from laboratory experiments and numerical simulations / Thomas von Larcher, Paul D. Williams, editors.

Other author/creatorLarcher, Thomas von.
Other author/creatorWilliams, Paul D. (Paul David), 1977-
Format Electronic and Book
Publication InfoWashington, D.C : American Geophysical Union ; Hoboken, New Jersey : John Wiley & Sons, [2015]
Descriptionxiii, 353 pages, 16 unnumbered pages of plates : illustrations (some color), graphs ; 29 cm.
Supplemental Content Full text available from AGU Digital Library - Books Series
Supplemental Content Full text available from Ebook Central - Academic Complete
Subject(s)
Series Geophysical monograph, 0065-8448 ; 205
Geophysical monograph ; 205. ^A48056
Contents Introduction: Simulations of natural flows in the laboratory and on a computer -- Part 1. Baroclinic-driven flows -- General circulation of planetary atmospheres: Insights from rotating annulus and related experiments -- Primary flow transitions in the Baroclinic Annulus: Prandtl number effects -- Amplitude vacillation in Baroclinic flows -- Part 2. Balanced and unbalanced flows -- Rotation effects on wall-bounded flows: Some laboratory experiments -- Altimetry in a GFD laboratory and flows on the polar ss-plane -- Instabilities of shallow-water flows with vertical shear in the rotating annulus -- Laboratory experiments on flows over bottom topography -- Direct numerical simulations of laboratory-scale stratified turbulence -- Part 3. Atmospheric flows -- Numerical simulation (DNS, LES) of geophysical laboratory experiments: Quasi-biennial oscillation (QBO) analogue and simulations toward Madden-Julian oscillation (MJO) analogue -- Internal waves in laboratory experiments -- Frontal instabilities at density-shear interfaces in rotating two-layer stratified fluids -- Part 4. Oceanic flows -- Large-amplitude coastal shelf waves -- Laboratory experiments with abrupt thermohaline transitions and oscillations -- Oceanic island wake flows in the laboratory -- Part 5. Advances in methodology -- Lagrangian methods in experimental fluid mechanics -- A high-resolution method for direct numerical simulation of instabilities and transitions in a Baroclinic cavity -- Orthogonal decomposition methods to analyze PIV, LDV, and thermography data of thermally driven rotating annulus laboratory experiments.
Abstract Provides a broad overview of recent progress in using laboratory experiments and numerical simulations to model atmospheric and oceanic fluid motions. This volume not only surveys novel research topics in laboratory experimentation, but also highlights recent developments in the corresponding computational simulations. As computing power grows exponentially and better numerical codes are developed, the interplay between numerical simulations and laboratory experiments is gaining paramount importance within the scientific community.--Provided by publisher
General note"This work is a co-publicatio between the American Geophysical Union and John Wiley & Sons, Inc."
Bibliography noteIncludes bibliographical references and index.
Access restrictionAvailable only to authorized users.
Technical detailsMode of access: World Wide Web
LanguageText in English.
Genre/formElectronic books.
LCCN 2014451952
ISBN9781118855935
ISBN1118855930

Available Items

Availability data is currently unavailable.